Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

The Influence of Diesel End-of-Injection Rate Shape on Combustion Recession

2015-04-14
2015-01-0795
The effect of the shape of the EOI was investigated through a pressure-modulated injection system in order to improve the understanding of the last portion of the traditional diesel diffusion combustion process. Here, the combustion recession at EOI is when the combustion of a mixing controlled diesel jet recedes backwards toward the fuel injector nozzle orifice. Combustion recession was observed using combustion luminosity imaging filtered at 309 nm to capture OH* chemiluminescence and 430 nm to capture CH* chemiluminescence, although soot Natural Luminosity (NL) will also be visible in these measurements. Experimental spray vessel results show that for relatively slow EOI decelerations below 1 ×106 to 2 ×106 m/s2, combustion strongly recesses completely back to the nozzle in both OH* and CH*/NL imaging. 1-D jet mixing calculations add support that this strong recession is indeed fuel rich.
Technical Paper

Investigating Limitations of a Two-Zone NOx Model Applied to DI Diesel Combustion Using 3-D Modeling

2016-04-05
2016-01-0576
A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
Technical Paper

A New Validation of Spray Penetration Models for Modern Heavy Duty Diesel Fuel Injectors

2017-03-28
2017-01-0826
The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353μm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
X